ThermalTronix TT-1384CLD-DS Long Wave Infrared Focal Plane Array

384×288 25um Uncooled Microbolometer

Issue E

Product Highlights

- a-Si microbolometer
- 384×288 focal plane array
- Pixel pitch $25 u m$ by $25 u m$
- Room temperature operation with TEC
- Hermetic Vacuum package
- On-chip temperature sensor
- Frame rate $30 \mathrm{~Hz} \sim 60 \mathrm{~Hz}$
- Single analog output
- Military standard qualification

Contents

Issue E 1
Figure Lists 3
Glossary 3
1 INTRODUCTION4
2 STRUCTURAL OVERVIEW 4
3 PERFORMANCE SPECIFICATIONS. 8
4 ELECTRICAL INTERFACE9
5 ENVIRONMENTAL CONDITIONS 13
6 DELIVERY 14
7 APPENDIX 14

Intellisystem

Table Lists

TABLE 1 Detector Pin List 6
TABLE 2 Bias Requirements For The TEC 7
TABLE 3 Getter Re-activation Conditions 7
TABLE 4 Operability Specifications 9
TABLE 5 Operation Bias Conditions 9
TABLE 6 Pulse Voltages 10
TABLE 7 Serial Link Instruction 11
TABLE 8 Image Flip Control 12
TABLE 9 CTIA Gain Control. 12
TABLE 10 Output arrangement 13
TABLE 11 Outputs 13
TABLE 12 Environment Conditions 13
Figure Lists
FIGURE 1 Detector Pin-out Diagram 6
FIGURE 2 Typical temperature sensor output TOUT characteristics 7
FIGURE 3 Clock Diagram 10
FIGURE 4 SERDAT Timing Diagram. 11

Glossary

CMOS	Compatible Metal Oxide Semiconductor
CTIA	Capacitance Trans-Impedance Amplifier
ESD	Electrical Static Discharge
FPA	Focal Plane Array
IR	Infrared
LWIR	Long Wave Infrared
MEMS	Micro-Electro-Mechanical Systems
NC	Not Connected
NETD	Noise Equivalent Temperature Difference
ROIC	Read Out Integrated Circuit
TEC	Thermo-Electric Cooler

1 INTRODUCTION

This document describes the operation conditions and main performance specifications of an uncooled long wave infrared focal plane array detector with reference number of TT-1384CLD-DS.

The TT-1384CLD-DS infrared detector is based on CMOS-MEMS micro-bolometer technology. The detector is a 384×288 pixels array with pixel pitch of 25 um by 25 um. The detector is sensitive to the long-wave infrared (LWIR) spectral range of $8 u m \sim 14 u m$.

The TT-1384CLD-DS infrared detector is vacuum packaged with an incorporated non-evaporable getter to maintain long-term vacuum. The temperature of the detector is controlled with a thermo-electric cooler (TEC).
The TT-1384CLD-DS infrared detector is read-out row-by-row and can provide a single analog output signal. The detector is typically operated under $30 \mathrm{~Hz} \sim 60 \mathrm{~Hz}$ frame rate.

2 STRUCTURAL OVERVIEW

The TT-1384CLD-DS detector consists of following physical structures: hermetic sealed vacuum metal packaging, an IR filter window in the front of the packaging, a non-evaporable getter inside of the packaging to help maintain long-term vacuum level, the FPA chip with an integrated temperature sensor, a thermo-electric cooler (TEC) to stabilize the detector temperature.

2.1 Overall Dimensions

The physical structure and overall dimensions of the detector packaging are described in the Appendix (sheet A to C).

2.2 Infrared Filter

An infrared filter window is incorporated in the front side of the detector package.
The outline size of the IR filter is 19.0 mm by 16.0 mm , its thickness is 1.0 mm . The optical interface detail is described in the Appendix (sheet C).

2.3 Pin-out Diagram and List

The pin-out diagram is presented in Figure 1, and the function of each pin is described in Table 1.

Symbol	PIN \#
GETTER	28
TEC +	27
NC	26
FR	25
VOUT_EN	24
NC	23
DGND	22
NC	21
SERDAT	20
DVDD	19
SERIAL	18
RST	17
INT	16
MCLK	15

PIN \#	Symbol
14	GETTER
13	TEC-
12	NC
11	VBS
10	VBB
9	NC
8	VPS
7	VPB
6	VREF
5	TOUT
4	AVDD
3	AGND
2	NC
1	VOUT

FIGURE 1 Detector Pin-out Diagram

Intellisystem

TABLE 1 Detector Pin List

Pin $\mathbf{N r}$	Symbol	Function
1	VOUT	Video analog output
2	NC	Not connected
3	AGND	Analog ground
4	AVDD	Analog supply
5	TOUT	Temperature \quad sensor
6	VREF	Reference voltage
7	VPB	Pixel biasing
8	VPS	Pixel ground
9	NC	Not connected
10	VBB	Blind pixel biasing
11	VBS	Blind pixel supply
12	NC	Not connected
13	TEC-	TEC-
14	GETTER	Getter

Pin Nr	Symbol	Function
15	MCLK	Main clock
16	INT	Integration time
17	RST	Reset
18	SERIAL	Serial link input control
19	DVDD	Digital supply
20	SERDAT	Serial link input data
21	NC	Not connected
22	DGND	Digital ground
23	NC	Not connected
24	VOUT_EN	Effective display array output
25	FR	First row output
26	NC	Not connected
27	TEC+	TEC+
28	GETTER	Getter

PINs marked NC can NOT be connected to the ground or any other type of supply bus.

2. 4 TABLE 2 Bias Requirements For The TEC

Pin Nr	Symbol	Absolute Max Rating
13	TEC-	Voltage: 4.3V Current: 3.0A
27	TEC +	Power: 7.0W

The temperature stabilization is required to be 10 mK .
The stabilized temperature of the detector is typically set $10 \mathrm{~K} \sim 20 \mathrm{~K}$ above the ambient temperature.

2. 5 Temperature Sensor

A CMOS temperature sensor is integrated in the FPA ROIC chip, It provides an analog output voltage TOUT (PIN5) which is related directly to the temperature of the detector chip.

TOUT signal is also implemented into the video analog output (VOUT) at each line transition (see Figure)
3). A typical TOUT versus the detector chip temperature relationship is shown in Figure 2. The sensitivity of the temperature sensor is about $-7.85 \mathrm{mV} / \mathrm{K}$ (Typical). TOUT is about 2.70 V for an FPA temperature of $25^{\circ} \mathrm{C}$ (Typical).

Intellisystem

FIGURE 2 Typical temperature sensor output TOUT characteristics

2. 6 Vacuum and Getter

The TT-1384CLD-DS detector is required to operate under high vacuum condition. A non-evaporable getter is integrated in the packaging to maintain the long-term vacuum level. The getter can be electrically re-activated when the performance of the detector is degraded due to the vacuum level degradation. The getter activation is performed by supplying a constant current to the two pins of the getter as shown in Table 3. Re-active the getter by the customer is not recommended.

TABLE 3 Getter Re-activation Conditions

Pin Nr	Symbol	Current	Time
$14 / 28$	Getter	$2.0 \mathrm{~A} \pm 0.1 \mathrm{~A}$	10 min

2. 7 Weight

The total weight of the TT TT-1384CLD-DS detector is less than 20g.

2. 8 Operating Temperature

The operating temperature range of the TT-1384CLD-DS detector is from $-40^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$. A heat sink condition with typical thermal resistance of $4 \mathrm{~K} / \mathrm{W}$ is required between the packaging base plate and the ambient, especially when the detector is operated at the high end of the temperature range.

2. 9 Storage Temperature

The storage temperature range of the TT-1384CLD-DS detector is from $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.

3 PERFORMANCE SPECIFICATION

A detector test report is provided with each delivered detector by the manufacturer which contains testing results of the responsivity, temporal NETD and operability.

The definitions of several parameters are further explained as following.

3.1 Responsivity

The detector responsivity is not a fixed performance specification parameter, the value supplied the test report is a measured value under the certain biasing and test conditions, and it is for information only.

3.2 Operability specification

3.2.1 Non-operating pixel

A pixel is defined as a "non-operating" if:

- its responsivity is less than $0.8 x$ average responsivity or larger than $1.2 x$ average responsivity;
- its NETD is larger than $1.5 x$ average NETD;

3.2.2 Cluster

A cluster is defined as a group of at least 3×3 non-operating pixels adjacent.

3.2.3 Non-operating Row

A row is considered as non-operating if larger than 50% of the pixels are non-operating.

3.2.4 Non-operating Column

A column is considered as non-operating if larger than 50% of the pixels are non-operating.

3.2.5 Operability Specification

Intellisystem

The operability of the delivered detector should meet the requirement in Table 4.
TABLE 4 Operability Specification

Non-operating row or column	O non-operating row or column
Cluster	central zone of $80 \times 60: \leq 0$ cluster other area: ≤ 2 clusters
Non-operating pixels	$\leq 1 \%$
Operability	$\geq 99 \%$

4 ELECTRICAL INTERFACE

4. 1 Operation Bias Voltages

To properly operate the $\boldsymbol{\pi}$-1384CLD-DS detector, various bias voltages should be supplied to each pin as specified in Table 5.

TABLE 5 Operation Bias Conditions

| Pin Nr | Symbo |
| :--- | :--- | :--- | :--- | :---: | :--- | :--- | :--- |
| l | |

VPB, VBS can be adjusted to optimize the detector performance within the above range.

4. 2 Pulse Voltage and Clock Diagram

MCLK is the main clock of the ROIC, and it is a continuous pulse signal of 50% duty cycle. It synchronizes the operation of the whole circuit. The frequency of MCLK is 6.25 MHz for a 50 Hz frame rate (Typical).
RESET is used to reset the ROIC operation by forcing the integration of the signal on the first row of the
Intellisystem Technologies S.r.I.
Via Augusto Murri, 1 - 96100 Siracusa - Phone +39 (0)931-1756256 / +39 (0)2-87167549 - Mobile (+39) 3351880035 em@il: info@intellisystem.it WEB: http://www.intellisystem.it

Intellisystem

FPA. It must not be repeated more than once per frame. RESET must change its state during a rising edge of MCLK.

INT is the integration signal of the ROIC. The high level of INT presents the integration time of a given row (T2 in Figure 3). The INT phase must be sent at each row. INT must change its state during the rising edges of MCLK. The detector is read row by row in a continuous frame rolling shutter mode. Row N integration and row $\mathrm{N}-1$ readout run simultaneously. The analog output of effective pixels is present after 18.5 TMCLK of the falling edge of the INT (see figure 3).

TABLE 6Pulse Voltages

Pin $\mathbf{N r}$	Symbol	Pulse Type		Low Level			High Level		
				Typical	Max	Min	Typical	Max	
15	MCLK	Input	5 V TTL	-0.3 V	0 V	0.3 V	4.7 V	5 V	5.5 V
16	INT	Input	5 V TTL	-0.3 V	0 V	0.3 V	4.7 V	5 V	5.5 V
17	RST	Input	5 V TTL	-0.3 V	0 V	0.3 V	4.7 V	5 V	5.5 V
20	SERDAT	Input	5 V TTL	-0.3 V	0 V	0.3 V	4.7 V	5 V	5.5 V

T1 $\geq 15 T M C L K, ~ 15 T M C L K \leq T 2$ (Integration time) ≤ 384 TMCLK, T3 $\geq(384+17) T M C L K, T 4=18.5 T M C L K, ~ T 5 \geq 0$
figure 3 clock diagram

4. 3 Serial Control

The serial control bus is developed for infrared imagers. The serial link (SERDAT: PIN \#20) is used to write the required user data. And SERIAL (PIN \#18) commands the serial link (SERDAT).
4.3.1 SERIAL
4.3.1.1 SERIAL=OV
a) SERDAT is off;
b) CTIA capacitance is fixed to 14 pF .

Intellisystem

4.3.1.2 SERIAL=5V

When SERIAL=5V, SERDAT is available.
a) When SERDAT $=0 \mathrm{~V}$, CTIA capacitance is fixed to 18 pF ;
b) When SERDAT is defined by 4.3.2, all the functions given by the serial link are available.

4.3.2 Serial Control Bus

SERDAT (PIN \#20) is a 51 bits control signal defined as in Table 7. The main feature of the serial interface include:
a) CTIA gain value: GAIN
b) Image flip: HFLIP, VFLIP

SERDAT can be applied by each frame or just once.
To activate the serial control bus, the first bit named START needs to be set at " 1 " i.e high level.
The clock frequency of SERDAT is governed by the Master Clock (MCLK). Data will be taken into account if START bit is at high level. Data must change during rising edge of MCLK and will be taken into account at the falling edge of the next RST. The timing diagram of SERDAT is shown in Figure 4.

TABLE 7 Serial Link Instruction

Position	Length (in bit number)	Name	Format (binary/decimal)	Value	
				Binary	1
Binary conversion					
1	1	Reserved	Binary	$0,0,0,0$	0000
2	4	HFLIP	Binary	1	1
3	1	VFLIP	Binary	1	1
4	1	GAIN	Binary	$1,0,1$	101
5	3			0000000000	0000000000
				0000000000	0000000000
6	41	Reserved	Binary	0000000000	0000000000
				00000000000	00000000000

T7 ≥ 1 TMCLK, $\mathrm{T} 8=50$ TMCLK, $\mathrm{T} 9 \geq 1$ TMCLK

Intellisystem

FIGURE 4 SERDAT Timing Diagram

4.3.2.1 Image Flip

The image could be flipped in horizontal and vertical direction using HFLIP and VFLIP input, as described in Table 8.

TABLE 8 Image Flip Control

Scanning Direction	HFLIP	
right \rightarrow left/up \rightarrow down	1	1
right \rightarrow left/down \rightarrow up	1	0
left \rightarrow right/up \rightarrow down	0	1
left \rightarrow right/down \rightarrow up	0	0

4.3.2.2 Gain Control

The GAIN enable CTIA gain adaptation for specific operating conditions. The different avilable configurations are as following:

TABLE 9 CTIA Gain Control

Gain	Value	CTIA Capacitance (pF)
1.00	111	18
1.125	011	16
1.29	101	14
1.50	001	12
1.80	110	10
2.25	010	8
3.00	100	6
4.50	000	4

4.4 Output Characteristics

The detector contains some outputs, named VOUT, TOUT, VOUT_EN and FR. VOUT is the analog video output, its output arrangement is shown in Table 10. TOUT is the temperature sensor output. VOUT and TOUT are described in Table 11.
VOUT_EN is a digital output of 5V TTL. Its high level indicates the presence of valid data on the analog output (VOUT). And its low level indicates the presence of temperature sensor output TOUT.

FR is a digital output of 5 V TTL. Its high level indicates the presence of valid data coming from the first row of the IRFPA on the analog output.

Analog output VOUT and TOUT can be loaded by a resistance $R \geq 1 \mathrm{M} \Omega$ in parallel with a capacitance C $\leq 10 \mathrm{pF}$.

Intellisystem

TABLE 10 Output arrangement

VOUT
Column 1 Row 1
Column 2 Row 1
...
Column 384 Row 1
Column 1 Row 2
Column 2 Row 2
...
Column 384 Row 2
Column 1 Row 3
Column 2 Row 3
...
...
Column 384 Row 288

TABLE 11 Outputs

Pin Nr	Symbol	Output Type		Range
1	VOUT	Output	variable	$0.4 \mathrm{~V} \sim 4.0 \mathrm{~V}$
5	TOUT	Output	variable	$2.0 \mathrm{~V} \sim 3.3 \mathrm{~V}$

5 ENVIRONMENTAL CONDITIONS

TT-1384CLD-DS detector is GJB-qualified (MIL-STD equivalent). The detector qualification is performed on the basis of sampling from the manufactured products and is representative of the typical manufacturing technology level. The detector should be qualified to the climatic and mechanical environmental conditions as listed in Table 12.

TABLE 12 Environment Conditions

$\mathbf{N r}$	Item	Standard and Method
1	High temperature storage	GJB 1788 Method 2020
2	Low temperature storage	GJB 1788 Method 2040
3	Thermal Shocks	GJB 1788 Method 2010
4	Random vibration	GJB 1788 Method 2080
5	Shocks	GJB 1788 Method 2070

Intellisystem

6 DELIVERY

6. 1 Packing

During transportation, the detector is placed into a plastic box and wedged with conductive foam, a testing report is delivered together with each detector.

6. 2 Storage

Detectors should be stored at conditions: temperature at $-10^{\circ} \mathrm{C} \sim 40^{\circ} \mathrm{C}$, relative humidity is less than 70%, dry and non-corrosive environment.
6.3 General Recommendations

Specific care should be taken in handling the TT-1384CLD-DS detector:
a) Electrostatic discharge (ESD) protection
b) Avoid directing the detector directly towards the sun, especially in the case the detector is mounted with a lens

7 APPENDIX

a) Sheet A : General View
b) Sheet B: Mechanical Interface
c) Sheet C: Optical Interface

NOTE:

1-Mechanical reference $O X Y Z$ are materialised by: $X Y$: Mechanical Mounting surface (A plane) X : Symmetry axis of the structure
Y : Perpendicular to X axis through line B
Z: Normal to XY plane
$0: X Y Z$ axis center
2-01: Optical plane center

Intellisystem

Sheet B Mechanical Interface

Sheet C Optical Interface

